

Tutorial 99.04.001 - evoloid gear calculation

created by: Florian Eigner | imk Health Intelligence GmbH | Amselgrund 30 | 09128 Chemnitz

contact: nextgear@imk-ic.com

last modified: 15.12.2023

Table of Contents

1 Load paths and settings	
2 Kinematics at the gear pair	
2.1 Design target - set up the intention of the gear pair	
2.1.1 Radial settings	
2.1.2 Axial settings	
2.2 Merge the design target and the iU_gears to a gear pair	
3. Profile und rack	
3.1 Profile	
3.1.2 Create the profile depending on the type	
3.1.3 Plot the profile	(
3.2 Trajectory	
3.2.1 Create the trajectory	
3.2.2 Plot the trajectory	4
3.3 Create the rack	
3.3.1 Merge the profile, trajectory and kinematics to an clc_geoRack	
3.3.2 Plot the rack	
4 Conjugation process	6
4.1 Strategy for conjugation	6
4.2 Gear 1	
4.2.1 Define modification	
4.2.2 Calculation.	
4.2.3 Plot	
4.3 Gear 2	8
4.3.1 Calculation	8
4.4 Plot the gears	8
5 Post processing	9
5.1 geometry analysis	
5.1.1 Check modification at gear 1	
5.1.2 Check curvature at gear 1	10
5.1.3 Check curvature at gear 2	10
5.1.4 Create a section	1 ²
5.1.5 Two-ball-dimension	12
5.2 Contact analysis	13
5.2.1 Setup	13
5.2.2 Run "one-tooth" analysis.	13

5.2.3 Merge to analysis with all teeth	14
5.2.4 Results of contact analysis	15
6 Export	20

1 Load paths and settings

Warning: Function vecnorm has the same name as a MATLAB built-in. We suggest you rename the function to avoid a Warning: Function vecnorm has the same name as a MATLAB built-in. We suggest you rename the function to avoid a potential name conflict.

Warning: Function vecnorm has the same name as a MATLAB built-in. We suggest you rename the function to avoid a Warning: Function vecnorm has the same name as a MATLAB built-in. We suggest you rename the function to avoid a potential name conflict.

2 Kinematics at the gear pair

2.1 Design target - set up the intention of the gear pair

Create a *iU_gear* for both gears.

2.1.1 Radial settings

2.1.2 Axial settings

2.2 Merge the design target and the iU_gears to a gear pair

```
creating gearPair from iUgear <gear_1> and iUgear <gear_2> ...
... optimize radius ratio to match betaSource = 0.873 ...
... optimized radius ratio to -0.684 ...
...done.
```

conjugating basesurface of gear <gear_1_init> to basesurface of basegear: <gear_2>done.

-50

3. Profile und rack

3.1 Profile

3.1.1 Set parameters for the profile

 $m_n = 25.4462$

Define for both gears a profileOffset. To generate a backlash *profileOffset_gear1* should be smaller than *profileOffset_gear2*.

0

-50

3.1.2 Create the profile depending on the type

3.1.3 Plot the profile

3.2 Trajectory

3.2.1 Create the trajectory

3.2.2 Plot the trajectory

3.3 Create the rack

3.3.1 Merge the profile, trajectory and kinematics to an clc_geoRack

3.3.2 Plot the rack

rack in global position

4 Conjugation process

4.1 Strategy for conjugation

We conjugate with the following strategy:

- 1. $rack_{gear1} \rightarrow gear_1$
- **2.** $rack_{gear1,modif\dot{e}d} \rightarrow gear_1 \rightarrow gear_2$

4.2 Gear 1

4.2.1 Define modification

Modification along the teeth.

Modification along the profile

Plot the convexity parameters

4.2.2 Calculation

conjugating rack <geoRack28> to gear: <gear_1> done.

4.2.3 Plot

4.3 Gear 2

4.3.1 Calculation

Since we use the conjugation strategy $gear_1 \rightarrow gear_2$ we need to calculate a "tool" similar to gear 1 first. The tool is the conjugation from the modified rack to the kinematics of gear 1.

```
conjugating rack <geoRack680> to gear: <gear_1> \dots done. conjugating gear <pinion> to basegear: <gear_2> \dotsdone.
```

4.4 Plot the gears

5 Post processing

5.1 geometry analysis

5.1.1 Check modification at gear 1

Comparison of modified and unmodified gear 1

5.1.2 Check curvature at gear 1

Curvature of gear 1

5.1.3 Check curvature at gear 2

Curvature of gear 2

5.1.4 Create a section

5.1.5 Two-ball-dimension

Calculate the position of the ball.

Plot the result.

5.2 Contact analysis

5.2.1 **Setup**

Setup boundaries

Define friction

5.2.2 Run "one-tooth" analysis

```
Contact analysis: Create mbsObj.
Contact analysis: Calculate mbs steps.
finished MBS step #: 1
finished MBS step #: 2
finished MBS step #: 3
finished MBS step #: 4
finished MBS step #: 5
finished MBS step #: 6
finished MBS step #: 7
finished MBS step #: 8
finished MBS step #: 9
finished MBS step #: 10
finished MBS step #: 11
finished MBS step #: 12
finished MBS step #: 13
finished MBS step #: 14
finished MBS step #: 15
finished MBS step #: 16
finished MBS step #: 17
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 18
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 19
```

```
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 20
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 21
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 22
Reached end of first direction. Calculate steps of other direction...finished MBS step #: 23
finished MBS step #: 24
finished MBS step #: 25
finished MBS step #: 26
finished MBS step #: 27
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 28
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 29
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 30
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 31
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 32
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 33
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 34
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 35
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 36
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 37
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 38
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 39
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 40
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 41
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 42
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 43
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 44
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 45
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 46
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 47
48 steps calculated in both directions. Contact analysis: Calculate hertzian contact.
Warning: cpaHertzianContact: normals at contact point for some steps not parallel! No Hertzian contact
for these steps:
mbsStep 43: |\langle n1, n2 \rangle| = -0.985156.
 mbsStep 44: |\langle n1, n2 \rangle| = -0.931685.
Contact analysis: finished.
```

5.2.3 Merge to analysis with all teeth

```
finished MBS step #: 1
finished MBS step #: 2
finished MBS step #: 3
finished MBS step #: 4
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 5
finished MBS step #: 6
finished MBS step #: 7
finished MBS step #: 8
```

```
finished MBS step #: 9
finished MBS step #: 10
finished MBS step #: 11
finished MBS step #: 12
finished MBS step #: 13
finished MBS step #: 14
finished MBS step #: 15
finished MBS step #: 16
finished MBS step #: 17
finished MBS step #: 18
finished MBS step #: 19
finished MBS step #: 20
finished MBS step #: 21
finished MBS step #: 22
finished MBS step #: 23
finished MBS step #: 24
finished MBS step #: 25
finished MBS step #: 26
finished MBS step #: 27
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 28
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 29
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 30
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 31
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 32
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 33
Warning: There are less than 50 points for evaluating efficiency. The result might be inaccurate.
finished MBS step #: 34
finished MBS step #: 35
finished MBS step #: 36
finished MBS step #: 37
finished MBS step #: 38
finished MBS step #: 39
finished MBS step #: 40
finished MBS step #: 41
finished MBS step #: 42
```

5.2.4 Results of contact analysis

target accuracy

-8

-9

Steps of analysis

Transmission function

Contact volume (all tooth)

Contact volume (all tooth)

Ease-Off at gear 1

Ease-Off at gear 2

6 Export